
Reconciling Offshore Outsourcing with
Model Based Testing

Dave Arnold, Jean-Pierre Corriveau, and Wei Shi
Carleton University, Ottawa, Canada

June 17th, SEAFOOD 2010

Jean-Pierre Corriveau

-  At Nortel: one of the original creators of ObjecTime (ROSE-
RT) in 1986
-  Consulting/teaching in telecoms since 1991

-  In collaboration with F. Bordeleau (Zeligsoft):
-  Worked with Raytheon on modeling for compliance the software radio

specification

-  In collaboration with staff at Amazon and Bitheads:
-  Discussing outsourcing and testing in industry	

My Background

Slide - 2 © D. Arnold, J.P. Corriveau, W. Shi 2010

Premises

  Outsourcing is a business relationship:
–  Any business relationship needs some form of contract:

– Must define deliverables and dates
– Must state how quality is verified

  Compliance/conformance testing must be a key
facet of an offshore outsourcing contract.
–  We require automated validation against an actual

implementation!

Model-Based Testing

© D. Arnold, J.P. Corriveau, W. Shi 2010 Slide - 4

  We require a testable model capable of automatically
generating/instrumenting executable checks.

  Such a testable model must support:
–  The capture of functional and non-functional requirements
–  Testability of the requirements model
–  Executability of the generated static and dynamic checks
–  Semantics rooted in the notions of responsibilities and scenarios
–  Abstraction of the testable model over several possible

implementations

  Current approaches to validation typically do not offer a
testable requirements model with the above
characteristics…

Testable Models

Slide - 5 © D. Arnold, J.P. Corriveau, W. Shi 2010

  The challenge with the development of MBT tools
lies in the ability to easily express the testable
model at a level of abstraction that is
implementation independent, yet executable.

  We seek to create an open framework for the
specification and execution of a testable model
against an implementation:
–  http://vf.davearnold.ca/

Our Approach

Slide - 6 © D. Arnold, J.P. Corriveau, W. Shi 2010

The Framework

Import	
 Core;	

Namespace	
 DaveArnold.Examples.School	

{	

	
 MainContract	
 University	

	
 {	

	
 	
 Parameters	

	
 	
 {	

	
 	
 	
 [1-­‐100]	
 Scalar	
 Integer	
 InstanceBind	
 UniversityCourses;	

	
 	
 	
 Scalar	
 Integer	
 MaxCoursesForFTStudents	
 =	
 4;	

	
 	
 	
 Scalar	
 Integer	
 MaxCoursesForPTStudents	
 =	
 2;	

	
 	
 	
 Scalar	
 Integer	
 PassRate	
 =	
 70;	

	
 	
 	
 [1-­‐12]	
 Scalar	
 Integer	
 InstanceBind	
 NumTermsToComplete;	

	
 	
 }	

	
 	
 	

	
 	
 Observability	
 List	
 tCourse	
 Courses();	

	
 	
 Observability	
 List	
 tStudent	
 Students();	

An Example Contract (1)

Slide - 8 © D. Arnold, J.P. Corriveau, W. Shi 2010

Responsibility	
 new()	
 {	

	
 Post(Courses().Length()	
 ==	
 0);	

	
 Post(Students().Length()	
 ==	
 0);	
 	
 	
 	
 	
 	

} 	
 	
 	

Responsibility	
 finalize()	
 {	

	
 Pre(Courses().Length()	
 ==	
 0);	

	
 Pre(Students().Length()	
 ==	
 0); 	
 	
 	
 	
 	

}	

	
 	
 	

Responsibility	
 tCourse	
 CreateCourse(String	
 name,	
 Integer	
 cap)	
 {	

	
 once	
 Scalar	
 Integer	
 oldSize;	

	
 oldSize	
 =	
 PreSet(Courses().Length());	

	
 Post(value.bindpoint.Name()	
 ==	
 name);	

	
 Post(value.bindpoint.CapSize()	
 ==	
 cap);	

	
 Post(Courses().Length()	
 ==	
 oldSize	
 +	
 1);	

	
 Post(Courses().Contains(value)	
 ==	
 true); 	
 	
 	
 	
 	
 	

} 	
 	

	
 	
 	

An Example Contract (2)

Slide - 9 © D. Arnold, J.P. Corriveau, W. Shi 2010

Responsibility	
 ReportMark	
 (tCourse	
 course,	
 tStudent	
 student,	
 Integer	
 mark)	
 {	

	
 	
 choice(mark)	
 <	
 Parameters.PassRate	

	
 	
 	
 	
 	
 	
 	
 {	
 student.bindpoint.failures	
 =	
 student.bindpoint.failures	
 +	
 1;	
 }	

Responsibility	
 RegisterStudentForCourse(tStudent	
 student,	
 tCourse	
 course);	

	
 	
 	

Responsibility	
 CancelCourse(tCourse	
 course)	
 	
 {	

	
 	
 Pre(Courses().Contains(course)	
 ==	
 true)); 	
 	

	
 	
 Post(Courses().Contains(course)	
 ==	
 false)); 	
 	
 }	

Responsibility CalculatePassFail() {
 each(Students())
 choice(iterator.bindpoint.failures) >= 2
 FailStudent(iterator);
 alternative
 PassStudent(iterator); }

An Example Contract (3)

Slide - 10 © D. Arnold, J.P. Corriveau, W. Shi 2010

Scenario	
 Term	
 {	

	
 Trigger(new()),	

	
 (

	
 	
 CreateCourse()[Parameters.UniversityCourses],	

	
 	
 TermStarted(),	

	
 	
 fire(TermStarted),	

	
 	
 LastDayToDrop(),	

	
 	
 fire(LastDayToDrop),	

	
 	
 TermEnded(),	

	
 	
 fire(TermEnded),	

	
 	
 observe(MarksRecorded)[Parameters.UniversityCourses],	

	
 	
 CalculatePassFail(),	

	
 	
 DestroyCourse()[Parameters.UniversityCourses],	

	
 	
 fire(TermComplete)	

	
)+,	

	
 Terminate(finalize());	

}	

An Example Contract (4)

Slide - 11 © D. Arnold, J.P. Corriveau, W. Shi 2010

Exports	

{	

	
 Type	
 tCourse	
 conforms	
 Course	

	
 {	

	
 	
 Student::tCourse;	

	
 }	

	
 Type	
 tStudent	
 conforms	
 Student	

	
 {	

	
 	
 Course::tStudent;	

	
 }	

}	

An Example Contract (5)

Slide - 12 © D. Arnold, J.P. Corriveau, W. Shi 2010

  We need to connect the testable requirements
model (in ACL) to the Implementation Under Test
(IUT)
–  This is accomplished through the notion of bindings
–  Bindings are a mapping between an ACL element and a

IUT element:
– Contracts  Types (Classes, Structs)
– Observabilities  A single method or property
– Responsibilities  One or more methods

Bindings

Slide - 13 © D. Arnold, J.P. Corriveau, W. Shi 2010

  In order to reduce the dependency on manual binding
–  We use binding extension modules to infer as many bindings

as possible
–  Modules can be written by third-party developers.

–  When a binding cannot be inferred, a short list of possible
bindings is presented, and the user is asked to make a
selection

Bindings

Slide - 14 © D. Arnold, J.P. Corriveau, W. Shi 2010

  The model is then compiled and executed against
the IUT
–  Static checks are evaluated
–  The IUT is launched against the runtime

–  Execution is monitored for responsibilities and scenarios
– Observabilities are invoked as needed by the runtime
– Metric information is captured (Performance, Security, etc)

–  Metric evaluators determine results based on gathered
metric information

  The result is a Contract Evaluation Report (CER)

Execution

Slide - 15 © D. Arnold, J.P. Corriveau, W. Shi 2010

  The CER provides information on the IUT’s
execution:
–  Static evaluation results
–  For each object instance

–  Information pertaining to any dynamic checks
–  Information regarding the pass/fail of observabilities,

responsibilities, and scenarios
•  Preconditions
•  Post-conditions
•  Invariants
•  Beliefs
•  Dynamic Checks

–  The result of metric analysis

Contract Evaluation Report

Slide - 16 © D. Arnold, J.P. Corriveau, W. Shi 2010

Execution

© Dave Arnold 2009 Slide - 17

Execution

© Dave Arnold 2009 Slide - 18

  The VF is also able to support
–  Contract refinement/inheritance
–  Atomic / parallel scenario blocks
–  Support for execution against web applications

  The VF consists of 1,355 classes totaling over
260,000 lines of C# and C++ source code

Additional Features

Slide - 19 © D. Arnold, J.P. Corriveau, W. Shi 2010

  Validation of our approach included
–  Individual testing of the ACL and CIL compilers

–  1,516 individual tests performed
–  Five case studies

–  Basic container
–  Advanced container
– Web login
– Grocery store
– University course registration and term operation

–  Use by a group of graduate students
–  Verify existing case studies
– Develop small to medium size projects (including army code!)

Validation of Our Approach

Slide - 20 © D. Arnold, J.P. Corriveau, W. Shi 2010

Contributions

  Our TRM and supporting VF contribute in the areas of requirements
engineering and validation by:

  Proposing a new set of requirements for a requirements model that
supports operational validation. This set being the first, to the best of our
knowledge, to include the following:
–  Capture of functional and non-functional requirements
–  Testability of the requirements model
–  Executabilty of checks generated from this testable model
–  Semantics rooted in the notions of responsibilities and scenarios
–  Abstraction of the testable model over several possible implementations
–  Openness to support specific static checks, dynamic checks, and metric

evaluators
  Defining a TRM that satisfies these requirements (the ACL)
  Providing an open VF supporting the specification and execution of the

TRM

Slide - 21 © D. Arnold, J.P. Corriveau, W. Shi 2010

  Extension Through Openness
–  Additional high-level contract languages

–  Possibly domain specific

–  The creation of more AutoBind modules
–  The creation of more checks

–  Static checks
– Dynamic checks
– Metric evaluators

Future Work

Slide - 22 © D. Arnold, J.P. Corriveau, W. Shi 2010

Bindings

© Dave Arnold 2009 Slide - 23

Bindings

© Dave Arnold 2009 Slide - 24

Bindings

© Dave Arnold 2009 Slide - 25

Bindings

© Dave Arnold 2009 Slide - 26

Bindings

© Dave Arnold 2009 Slide - 27

  Once the binding process is complete, the ACL and
binding tables are used to generate a Contract
Intermediate Language (CIL) representation.
–  Low level stack-based language
–  Designed so that other high level contract languages can

be used with the runtime
–  Possibly graphical representations

CIL Generation

Slide - 29 © D. Arnold, J.P. Corriveau, W. Shi 2010

Scope of our Work

Slide - 31

Informal
Requirements,
Textual Use Cases

Structural
Diagrams

SDL, or UML
class, object,
component, &
deployment
diagrams

Behavioral Diagrams
MSC/SDL, or UML
sequence, collabor.,
& statechart
diagrams

URN-FR / UCMs
Superimpose visually system level behaviour
onto structures of abstract components. Can
replace UML use case & deployment diagams.

URN-NFR/GRL
Goals, non-functional
requirements, alterna-
tives, rationales

A Testable Model
(ACL)

Testing Report

Bindings

 Implementation
Under Test

© D. Arnold, J.P. Corriveau, W. Shi 2010

The Framework

On Capturing Requirements

We distinguish 3 ‘schools’:
–  Formal

– Require hard-to-find expertise
– Unified? Executable? Traceable to code?

–  Code-based
– Modeling is minimized => no testable model
–  Agile methods (e.g., TDD) advocate intensive collaboration

–  Model-Based
–  Testable? Unified? Executable?
–  Full code generation DOES require implementation-aware

designers!

