
Chair of Software Engineering

Two or three things
I would like to know

(empirically)

Bertrand Meyer

Конференция Сифуд (SEAFOOD)
Санкт-Петербург, Июнь 2010

2

Supplementary topics

 Experiences in industry and academic distributed
development

 Verification research at ETH Zurich

3

Great ideas

Structured programming

Object-oriented programming

Design by Contract

Object-oriented analysis

Seamless development

Test-driven development

Model-driven architecture

UML

Use cases

Pair programming

Refactoring

Scrum

Aspect-oriented programming 4

How do we know
they work?

The Marco Polo principle (R. Lister)

“I traveled far and
saw wonderful things”

5

Example statement (Dijkstra, 1968)

“For a number of years I have been familiar with the
observation that the quality of programmers is a decreasing
function of the density of go to statements in the
programs they produce. More recently I discovered why
the use of the go to statement has such disastrous
effects, and I became convinced that the go to statement
should be abolished from all “higher level” programming
languages (i.e. everything except, perhaps, plain machine
code). At that time I did not attach too much importance
to this discovery; I now submit my considerations for
publication because in very recent discussions in which the
subject turned up, I have been urged to do so.”

6

Another example: the Agile manifesto

7

8

How the rest of the world views software

Source: C. Gerber, Stryker Navigation

ISO 14971 (medical devices):

Risk = f (LIKELIHOOD, Severity)

Software
(IEC 62304):

LIKELIHOOD =
100%

What the field needs

Two complementary views:

 Deductive:
“Try my approach!”

 Inductive:
“I tried this and it

 Worked!

 Didn’t work!”

Cf physics:

 Theoretical

 Experimental

9

A horror story

Semicolon as:

 Separator (Algol):

p ; q ; r -- As in: f (x, y, z)

 Terminator (C):

p ; q; r;

Why do Ada, C++, Java, C#...
use terminator convention?

Answer: Gannon & Horning, Language Design for
Programming Reliability, IEEE Trans. on S.E., June 1975

Experiment: programmers in language with terminator
convention make fewer mistakes

10

Wrong!
Syntax errors only
PL/I-trained programmers
In separator language,

extra semicolon is error!

The mistakes that happen in practice

while (e) a

if (e) then

a

else

b

11

;

;

A horror story

Semicolon as:

 Separator (Algol):

p ; q ; r -- As in: f (x, y, z)

 Terminator (C):

p ; q; r;

Why do Ada, C++, Java, C#...
use terminator convention?

Answer: Gannon & Horning, Language Design for
Programming Reliability, IEEE Trans. on S.E., June 1975

Experiment: programmers in language with terminator
convention make fewer mistakes

12

Wrong!
Syntax errors only
PL/I-trained programmers
In separator language,

extra semicolon is error!

Empirical software engineering

Advocated for many years by such people as Barry Boehm,
Vic Basili, Watts Humphrey, Walter Tichy, Andreas Zeller,
…

Aim: subject software engineering claims to rigorous
experimental evaluation

Many more papers recently: ICSE, ESEC, ESEM

13

By the way…

14

http://se.ethz.ch/laser

http://se.ethz.ch/laser

Early empirical papers

Industry: not reproducible

University: not credible

15

What has changed

In the past ten years, the availability of large open-source
project repositories has provided empirical software
engineering researchers with a wealth of objective material
that makes verifiable, repeatable analyses possible

Some commercial software has also become available for
examination, e.g. from Microsoft

16

Simple sample questions

1. Do novice programmers produce more bugs (in Eclipse)?
(Andreas Zeller)

2. Are more tested modules less bug-ridden?

3. Are goto-rich modules more bug-prone (in Eclipse)?
(Andreas Zeller)

17

Empirical SE papers, today

Better than they used to be, but:

 Often very disappointing, e.g. many studies ask people
what they think instead of using objective measures

 “Threats to Validity” section kills generalization

18

Sample open questions: pair programming

1. Does it lead to fewer bugs?

2. Does it lead to shorter debugging times?

3. Are there good programmers who will not adapt to it?

4. Should it be applied throughout the programming phase?

5. Should it be applied to other tasks, e.g. pair specifying,
pair testing?

6. Are there useful variants, e.g. programmer-tester pairing?

19

Sample open questions: nominal values

20

Time

Cost Boehm (1981):
• Nominal time
• Nominal cost
• Absolute limits

Sample open questions: refactoring

What is better:

 Design?

 Refactoring?

 Some combination?

21

Sample open questions: tests vs specs

What works better:

 Extensive specifications?

 A test-driven process?

 Some combination?

22

Sample question: RTC vs CTR

Commit strategies:

 Review Then Commit (Google, original Apache)

 Commit To Review (Apache)

See Rigby, German, Storey, Open Source Software Peer
Review Practices: A Case Study of the Apache Server,
ICSE 2008, but need studies on other projects and
correlation with software quality measures!

23

Sample open question: complexity measures

Which measures correlate best to quality indicators?

 SLOC

 Function points

 Specific O-O metrics

 McCabe etc.

24

Sample open question: testing

When should we stop testing?

25

Conditions for progress

Better refereeing process

 Experimental work acceptable

 Reproducibility papers acceptable

 “No surprise” dismissal not valid

Openness

 All code and data available on Web

 All assumptions disclosed

Reproducibility

No exaggerated “Threats to Validity” excuses

26

A plan

Select ten questions

Assemble panel of experts

Publicize questions, invite answers

Publication date: July 2010 (TOOLS)

Submission date: February 2011

Workshop: July 2011 (TOOLS)

27

Supplementary topics

 Experiences in industry and academic distributed
development

 Verification research at ETH Zurich

28

Verification research
at ETH Zurich

29

Our verification research

Automatic testing: AutoTest

 Manual testing (called “automatic testing” elsewhere, e.g. Junit)

 Test generation

 No manual test suites or test cases

 No oracles (they come from the existing contracts)

 Push-button

 Test extraction: generate reproducible test cases from failures

Automatic bug fixing: AutoFix

Full specifications: EiffelBase 2

Proofs: Hoare-based

Proofs: Object-oriented programs (the alias calculus)

Proofs: Separation logic

Proofs and tests: concurrency (SCOOP)

30

VAMOC: Verification As A Matter Of Course

Arbiter
Programmer

Suggestions

Boogie
prover

Sep. logic
prover

AutoFix

AutoTest

Test case
generation

EVE (IDE)

Suggestions

Test
execution

Test results

Interactive
prover

Not shown but important

 Invariant generation
(Carlo Furia)

 Full contracts
(Nadia Polikarpova)

 Proof transformation
(Martin Nordio)

 Fix suggestions
(Yi Wei, Yu Pei, joint work with Andreas Zeller)

What makes it all possible

Contracts throughout

Try our techniques:

http://eiffel.com

http://se.ethz.ch

33

http://eiffel.com/
http://se.ethz.ch/

Experiences
in academic & industry
software development

34

Distributed Software Development

Two case studies, lessons and challenges:

 Industry: experience with distributed development at
Eiffel Software

 Academia: the distributed course project (DOSE) at
ETH Zurich

35

EiffelStudio development

Eiffel Software, in Santa Barbara (Calif.), since 1985

Two-million line code base (almost all Eiffel, a bit of C)

Major industry customers, mission-critical applications

Open-source license, same code, vigilant user community

6-month release schedule since 2006

My role: more active in past two years

Developer group ecosystem:

 Small group (core is about 10 people)

 Most young (25-35)

 Highly skilled

 Know Eiffel,O-O, Design by Contract

 Strong company culture, shared values

 Know environment, can work on many aspects

 Distributed

 Mostly, we live in a glass house
36

Principle

Every team needs a regular meeting

Our solution: the weekly one-hour meeting

Replaced a SB-only meeting (every Friday, until 2005)

37

How do we organize a meeting?

Santa Barbara:
8 AM

Zurich:17:00

France:17:00

Moscow:19:00

Shanghai: 23:00

38

Meeting tools: now

Webex for conference call management

(Used X-Lite, gave up)

Google Docs

Wiki site (http://dev.eiffel.com)

Skype: chat window only

39

http://dev.eiffel.com/

Meeting properties

Top goal: ensure that we meet the release deadline

Tasks: check progress, identify problem, discuss questions
of general interest

Not a substitute for other forms of communication

Humans can multiplex!

Time is strictly limited: one hour

40

41

Principles

Scripta manent:
Organize meetings

around shared
documents

42

Code review

Traditional: time-consuming, tedious, value often
questioned as compared to e.g. static analysis tools

With the Web it becomes much more interesting!
 Classes circulated three weeks in advance
 Comment categories: choice of abstractions, other

aspects of API design,architecture choices,
algorithms & data structures, implementation,
programming style, comments & documentation

 Comments in writing on Google Doc page, starting one
week ahead

 Author of code responds on same page
 Meeting is devoted to unresolved issues

43

Goal of the DOSE course at ETH Zurich

Prepare students to the new, globalized world of software
development

Some topics:

 Requirements in a distributed project

 Quality assurance

 Project models, CMMI

 Agile methods

 Managing relationships with suppliers, contract
negotiation

 …

44

Project: involving other universities

Since 2007:

 Odessa National Polytechnic (Ukraine)

 University of Nizhny Novgorod (Russia)

 Politecnico di Milano (Italy) (C. Ghezzi & E. di Nitto)

 University of Debrecen (Hungary)

 University of Zurich

 Hanoi University of Technology (Vietnam)

 (2010) University of Rio Cuarto (Argentina)

45

Project principles and roles

Emulate industrial setting, but only where it makes sense
 Benefits of a controlled setting
 Goal #1 is to learn

All groups created equal
 We do not want one university to specify & another

implement
Clear management structure

 Central management role, currently at ETH
 Technology choices imposed

Eiffel (as a language and method)
Origo software development platform

origo.ethz.ch
Web tools
Any others that may be necessary

 Universities can contribute, e.g. broadcast own lectures
46

Teams and groups

University A Team A1 Team A2 Team A3 Team A4

University B Team B1 Team B2 Team B3

University C Team C1 Team C2 Team C3

University D Team D1 Team D2

University E Team E1 Team E2 Team E3 Team E4

Group 1

Group 2 Group 3

47

DOSE 2007 project results

•Delays to set up the projects

•Lack of communication

• Delay in replying to e-mails

• Technical problems with skype conferences

•Misunderstandings in SRS

•Weak API design

• Incomplete

• Ambiguous

•Integration partially failed

48

Software Requirements Specification

D.1. The system shall be able to extract the elements of
a call for paper from text e-mails.

D.2. The system can send the e-mail only if at least all
key elements have been extracted or introduced by the
user. The key elements are: (1) conference name, (2)
conference dates, (3) abstract and submission deadline,
(4) conference category, and (5) URL of the conference.

D.3. The conference category is either “Conference” or
“Symposium” or “Workshop” or “Summer School”

49

Some problems

Case 1 - Submission deadline:

 Team A: day.month.year
 Team B: integers for the day and year but a

string (such as "January" or "February") for the
month.

Case 2 – Abstract deadline earlier than submission
deadline:

 Team A: Not checked

 Team B: Checked – Exceptions were triggered

50

Solution: class specification

class EVENT feature

submit_to_csel

-- Submit the conference information by sending an e-mail.

require

valid_deadlines: abstract_deadline.earlier_than (paper_deadline)

do … end

feature -- Implementation

name: STRING

abstract_deadline, paper_deadline: DATE

category: CATEGORY

invariant

category_status: category.is_conference xor

category.is_symposium xor

category.is_workshop xor

category.is_summer_school

end

51

Interface: class CATEGORY

class CATEGORY feature -- Status report

is_conference: BOOLEAN

-- Does this category represent conferences?

do end

is_symposium: BOOLEAN

-- Does this category represent symposiums?

do end

is_workshop: BOOLEAN

-- Does this category represent workshops?

do end

is_summer_school: BOOLEAN

-- Does this category represent summer schools?

do end

end

52

Main lesson from first session

Techniques of abstraction & contracts

APIs are critical

53

DOSE 2008 results

The systems were integrated and the three clusters
worked in the same system

Contracts helped to document and understand the
interfaces

Contracts in SRS were useful to avoid misunderstandings
and to specify the interaction between subsystems

54

Difficulties (e-mails)

55

Their document is clearly not
consistent with the decisions we
took in our last meeting

Team A has implemented the
system in Java, and we have
implemented in Eiffel; now, we
cannot integrate it, any hints?

Some members of our
team suffer from
weak-English

I'm sorry I could not make it
to the implementation
meeting yesterday. A water
pipe in my apartment burst ...
After some frantic hours of
fixing and cleaning up, it is
now more or less OK

Aleksey couldn't read any
emails last week because his
Internet cable had been
stolen by a drunken bear

Application Architecture (DOSE 2009)

Server

Main GUI

Tien Len Belot Tschau
Sepp

Rikiki

Bura Briscola
Chiamata

Makao Scala 40

Net

56

DOSE 2009 results

8 games fully implemented, integrated and deployed

55’000 lines of code

0

10000

20000

30000

40000

50000

60000

19.окт 26.окт 02.ноя 09.ноя 16.ноя 23.ноя 30.ноя

Interface

Specification

Final implementation

1st Implementation

Prototype

57

We are doing it again!

58

September-December 2010

ICSE SCORE competition

http://se.ethz.ch/dose

Join us!

http://se.ethz.ch/dose

Final thoughts

59

Software is special and not: do

Do not overestimate, and do not underestimate, the
differences

Not special: it is the engineering of products, based on
mathematics

Special:

 Virtual product
“The industry of pure ideas”

 Design only, no production

 No degradation

 Complexity

 Change

 Description-Implementation Porosity

Description and implementation

The Bridge

The Drawing of the Bridge

Is this a program?

AccNum = token;

CustNum = token;

Balance = int;

Overdraft = nat;

AccData :: owner : CustNum

balance : Balance

state Bank of

accountMap : map AccNum to AccData

overdraftMap : map CustNum to Overdraft

inv mk_Bank(accountMap,overdraftMap) ==

for all a in set rng accountMap & a.owner in set

dom overdraftMap and

a.balance >= -overdraftMap(a.owner)

Specification (VDM)

63

Is this a program?

note

description :
"Individual fragments of a schedule "

deferred class SEGMENT feature

schedule : SCHEDULE deferred
end

-- Schedule to which
-- segment belongs

index : INTEGER deferred end
-- Position of segment in
-- its schedule

starting_time, ending_time :

INTEGER deferred
end

-- Beginning and end of
-- scheduled air time

next: SEGMENT deferred end
-- Segment to be played
-- next, if any

sponsor : COMPANY deferred end
-- Segment’s principal sponsor

rating : INTEGER deferred end
-- Segment’s rating (for
-- children’s viewing etc.)

 Commands such as change_next,
set_sponsor, set_rating omitted 

Minimum_duration : INTEGER = 30
-- Minimum length of segments,
-- in seconds

Maximum_interval : INTEGER = 2
-- Maximum time between two
-- successive segments, in seconds

64

Is this a program?

invariant

in_list: (1 <= index) and (index <= schedule.segments.count)

in_schedule: schedule.segments.item (index) = Current

next_in_list: (next /= Void) implies

(schedule.segments.item (index + 1) = next)

no_next_iff_last: (next = Void) = (index =
schedule.segments.count)

non_negative_rating: rating >= 0

positive_times: (starting_time > 0) and (ending_time > 0)

sufficient_duration:
ending_time – starting_time >= Minimum_duration
decent_interval :
(next.starting_time) - ending_time <= Maximum_interval

end

65

Commercial

note

description: "Advertizing segment "
deferred class COMMERCIAL inherit

SEGMENT
rename sponsor as

advertizer end
feature

primary: PROGRAM deferred
-- Program to which this
-- commercial is attached

primary_index: INTEGER deferred
-- Index of primary

set_primary (p: PROGRAM)

-- Attach commercial to p.

require

program_exists: p /= Void

same_schedule: p,schedule = schedule

before:
p.starting_time <= starting_time

deferred

ensure

index_updated:
primary_index = p.index

primary_updated: primary = p
end

invariant

meaningful_primary_index: primary_index = primary.index

primary_before: primary.starting_time <= starting_time

acceptable_sponsor: advertizer.compatible (primary.sponsor)

acceptable_rating: rating <= primary.rating

end

Description-Implementation Porosity

Models and programs

To program is to understand

(Kristen Nygaard)

Seamless development (Eiffel)

The Single Product Principle:

The program is the model

The model is the program

Great ideas

Structured programming

Object-oriented programming

Design by Contract

Object-oriented analysis

Seamless development

Test-driven development

Model-driven architecture

UML

Use cases

Pair programming

Refactoring

Scrum

Aspect-oriented programming 68

How do we know
they work?

